Project Information:

Our project name is Heap Heap Hooray, and our project is the development of a garbage

collector for the MiniJava compiler. This project requires us to deep-dive into garbage collector
implementations, understanding and learning from them to write one that caters to the project's

goals.

Our team consists of Tyler Gutowski (tgutowski2020@my.fit.edu), and Trevor Schiff

(tschiff2020@my.fit.edu). Our advisor and client is Dr. Ryan Stansifer (ryan@fit.edu), a

compiler researcher who has a deep understanding of the MiniJava compiler and Java runtime.

Our primary goal for Milestone 2 was to implement the reference counting algorithm, and our
secondary goal was to implement mark-and-sweep. We completed our primary goal, but did not
begin working on our second goal. The mark-and-sweep algorithm has become our primary goal

for Milestone 3.

Progress Matrix:

Task Progress Tyler Trevor
1. Heap

100% 0.0 1.0
2. Allocator

100% 0.2 0.8
3. Reference counting initialization
handling

100% 0.5 0.5
4. Reference counting reference handling

100% 0.5 0.5

mailto:tgutowski2020@my.fit.edu
mailto:tschiff2020@my.fit.edu
mailto:ryan@fit.edu

5. Reference counting argument handling

100% 0.5 0.5
6. Environment Setup (SPARC, Jabberwocky,
QEMU)

100% 1.0 0.0
7. Memory Tests

100% 0.5 0.5
8. Mark-and-Sweep implementation

0% 0.0 0.0

Discussion:

1.

2.

Add HeapHeader to store information about the Object. This information helps the GC
keep necessary information regarding reference counting and marks for mark-and-sweep.
Added methods for heap allocation management (allocating, freeing, checking addresses)
and functions for incrementing and decrementing reference counting of the heap
allocations.

Added functionality to ensure an object is initialized with a reference counter, via
heap_alloc(), which initializes the reference counter at 0, which increments upon
reference.

The reference counter gets incremented when a reference is passed.

The reference counter gets incremented when an object is passed in as a function
argument. This happens in the prologue of the function, where the counter is
incremented, and in the epilogue it decrements.

We set up SPARC on a local machine to run the MiniJava compiler. We chose local over
Andrew because we might need specific permissions at a later date. The project uses the
containerization software Jabberwocky
(https://github.com/Kippiii/jabberwocky-container-manager) from a previous senior
project. It was written by lan Orzel and Dylan McDougall. We chose this software for our
containerization because there are pre-made containers for C, C++, Ada, Go, Rust,
Fortran, Haskell and Prolog for Programming Language Concepts, OS/161 for Operating
Systems, and the SPARC architecture for Compiler Theory. Since the compiler we are

using is from the Compiler Theory class, it was simple. Setting up the environments was
very difficult for multiple reasons. First, I was hoping to use my clustered Raspberry Pi
server to run SPARC through QEMU. This proved to be difficult, because the SPARC
installation kept crashing due to the limited resources (Debian 11 running a SPARC
emulator). Then we decided that it would be beneficial to just use Jabberwocky, which
runs a Debian container with QEMU that runs SPARC, but my Raspberry Pi server was
overloaded. I tried running it natively on Windows, but because the Makefiles were
written for Linux, I installed Ubuntu WSL and worked from there.

We ran a few simple MiniJava tests where we initialized new objects, then added and
removed a few references to ensure the reference counter worked. We also ran a
clobbering test where we overwrote an already existing object with the expectation that
its counter would decrement.

. The Mark-and-sweep algorithm was a secondary task that didn’t get completed. It will

become the primary task for our Milestone 3.

Contributions:

Tyler Gutowski: Helped in writing the allocator, and half of the reference counting software. The

reference counting software keeps track of when objects are initialized, referenced, and passed in

as function arguments. Tyler also set up the Jabberwocky container and ran a SPARC

environment locally to run the garbage collector with tests he wrote.

Trevor Schiff: Designed and wrote the HeapHeader from scratch, which allows the GC to grab

the necessary information about objects. Also wrote the allocator and deallocator, which helps

the reference counter keep track of which objects are still in use. Wrote most of the reference

counting software to determine when objects were initialized, referenced, and passed in as

function arguments. Trevor helped in writing the MiniJava test files which helped to show how

the objects were being referenced.

Next Milestone:
Task Tyler Trevor
Implementation of the Mark [0.5 0.5
Phase algorithm
Implementation of the Sweep | 0.5 0.5
Phase algorithm
Mark-and-Sweep testing 0.8 0.2
Dividing the heap into 0.2 0.8
multiple parts for
defragmentation

Implementation of the 0.5 0.5
Copying Algorithm

Copying Algorithm testing 0.5 0.5
Integration with Reference 0.2 0.8
Counting

Comparing metrics between | 0.5 0.5
different GC algorithms

Discussion:

In our next milestone, we're diving deep into the Mark-and-Sweep and Copying garbage
collection algorithms. We’re both going to be tackling the Mark Phase and the Sweep Phase. We
understand how important it is to get these right. Trevor will be taking a bit more of the load
during the heap division for the Copying Algorithm, due to his experience with compilers, while
Tyler will work on the testing in more depth. We'll both be hands-on when implementing and
testing the Copying Algorithm, because it should be similar to the Mark-and-Sweep algorithm.
Our goal is to wrap things up by smoothly integrating everything with the existing reference
counting system, and comparing the metrics.

Client Meetings:

See Faculty Advisor Meetings below

Client Feedback:

See Faculty Advisor Feedback below

Faculty Advisor Meetings:

We had one meeting with Dr. Stansifer on October 23rd to discuss our ideas with the
environment, and another meeting on October 30th to show our progress and to give a short
demonstration.

Faculty Advisor Feedback:

In email.

Approval from Faculty Advisor:

"I have discussed with the team and approve this project plan. I will evaluate the progress and
assign a grade for each of the three milestones."

Signature: Date:

Evaluation by Faculty Advisor:

Tyler

Gutowski O] 1|2]3 551 6 |65 7.5 8.5 951 10
Trevor

Schiff O] 1|2]3 55| 6 |65 7.5 8.5 95110
Signature: Date:

