
Heap Heap Hooray:
Improving Memory Management

Tyler Gutowski, Trevor Schiff, 
Dr. Ryan Stansifer (client)



Team

● Tyler Gutowski (member)

● Trevor Schiff (member)

● Dr. Ryan Stansifer (faculty advisor, client)



Meetings

● Wednesday, 30 August
○ Discuss and better understand project idea

● Emails
○ Research

○ Finalizing project ideas



Goals

● Primary goal:
○ Develop runtime garbage collector (GC)

○ Determine optimal GC algorithm(s)

○ Integrate with MiniJava compiler developed as part of 

Compiler Theory course
■ “MiniJava” refers to a simple, but non-trivial subset of Java

● Secondary goal:
○ Alter parameters based on source code “type” (graphs, etc.)

■ Potentially more efficient memory

■ How to group source code based on “type”?



Motivation

● MiniJava runtime does not offer automatic memory 

management
○ GC is not a required part of the Compiler Theory course

○ “New” operator exists, but user is responsible for lifetime of 

allocation

● As MiniJava is a subset of Java, memory cannot be 

manually freed
○ No “delete” operator exists

○ Without GC, all heap allocations are permanent

○ Losing reference means losing memory block forever



Key Features

● Automated memory management in MiniJava
○ “Garbage collection”

● No effort required by the user
○ GC will be part of compiler runtime

● Verbose debugging and graphics
○ Current GCs are very abstracted



Technical Challenges

● Understand and implement GC algorithm(s)

● Learn how to integrate GC with MiniJava runtime

● Determine data/algorithm set for GC performance testing



Milestone 1

1. Literature Review
○ Analyse The Garbage Collection Handbook (Richard Jones, et. al) to 

understand GC architecture and algorithms
○ Evaluate strengths and weaknesses of different approaches to GC
○ Examine open-source projects to see real-world examples

2. Requirements Gathering
○ Define project objectives, scope
○ Determine metrics for testing

3. Feasibility
○ Assess project feasibility
○ Identify prospective project challenges

4. Design
○ Select algorithm for GC implementation
○ Develop high-level design and create design documents



Milestone 2

1. Architecture
○ Establish strategy for integration with compiler and runtime
○ Finalize architecture and validate with prototype

2. Tools and Setup
○ Select/setup development tools and environment
○ Select/setup project management tools, such as version control
○ Establish testing framework

3. Coding Phase
○ Begin implementation of GC core components
○ Implement debugging tools
○ Test and demo core components



Milestone 3

1. Coding Phase (cont.)
○ Implement identification and marking

○ Integrate memory management with compiler and runtime

2. Testing and Demoing
○ Address memory leaks

○ Demo added functionality

○ Demo project to the customer


