
Heap Heap Hooray:
Improving Memory Management

Tyler Gutowski, Trevor Schiff, 
Dr. Ryan Stansifer (client)



Team

● Tyler Gutowski (member)

● Trevor Schiff (member)

● Dr. Ryan Stansifer (faculty advisor, client)



Goals

● Primary goal:
○ Develop runtime garbage collector (GC)

○ Integrate with MiniJava compiler developed as part of 

Compiler Theory course
■ “MiniJava” refers to a simple, but non-trivial subset of Java

● Secondary goal:
○ Determine optimal garbage collection configuration based on 

algorithms exhibited in source code

■ Explore memory and execution overhead



Motivation

● MiniJava runtime does not offer automatic memory 

management
○ GC is not a required part of the Compiler Theory course

○ “New” operator exists, but user is responsible for lifetime of 

allocation

● MiniJava is a subset of Java, so memory cannot be 

manually freed
○ No “delete” operator exists

○ Without GC, all heap allocations are permanent

○ Losing reference means losing memory block forever



Key Features

● Automated memory management in MiniJava
○ “Garbage collection”

● No effort required by the user
○ GC will be part of compiler runtime

● Verbose debugging and graphics
○ Current GCs are very abstracted



Technical Challenges

● Understand and implement GC algorithm(s)
○ Reference Counting

○ Mark-Sweep

● Learn how to integrate GC with MiniJava runtime

● Understand requirements for implementation of “copying” 

GC
○ More involved with the heap than previous algorithms

● Determine data/algorithm set for GC performance testing
○ Consider which metrics are essential for understanding



Algorithms and Tools

● MiniJava compiler (named “mjc”)
○ Developed during Compiler Theory course
○ Extended with garbage collection throughout this project
○ Written in Java

● Compiler runtime support
○ Runtime support for MiniJava programs
○ Handles memory allocation, garbage collection
○ Written in C

● Jabberwocky (“Virtual Development Environment in a Box”)
○ SPARC environment similar to a Docker container
○ Contains useful SPARC tools such as GCC, GDB, etc.
○ All GC testing occurs within this container



System Design



Evaluation

● Ensure GC correctness/reliability
○ Before evaluating performance by algorithm, the GC must first work 

correctly

● Compare GC performance by source code algorithms
○ Gather metrics using MiniJava source code containing different 

algorithms

● Determine optimal GC configuration for source code
○ Based on algorithms exhibited in said source code

○ In an abstract sense, should be applicable outside MiniJava/mjc



Progress Summary

Module/feature % Complete To Do

Reference Counting 100 N/A

Mark-Sweep 100 N/A

Copying 0 Design and implement

Generational 0 Design and implement

Final Bugfixes & Test Suites 0 Design and implement

Compiler flags/options for 
end-user

0 Design and implement



Milestone 4

1. Implement “copying” GC method
○ Involves managing two heaps
○ GC cycles copy data between heaps to defragment live allocations, 

and prepares unreachable allocations to be freed

2. Write and execute tests for copying GC
○ MiniJava test cases to test GC correctness

3. Allow GC configuration when compiling MiniJava programs
○ Add MJC compiler flags and other configurations
○ Requires considerable further system design

4. Run tests and gather metrics across the three GC methods
○ Ref-count, Mark-sweep, Copying
○ Collect more detailed data, such as memory/execution overhead



Milestone 5

1. Implement “generational” GC method
○ Implementation somewhat built on top of copying GC
○ Popularized in environments such as the Java Virtual Machine 

2. Write and execute tests for generational GC
○ MiniJava test cases to test GC correctness

3. Conduct evaluation and analyze results
4. Create poster and e-book page for Senior Design Showcase



Milestone 6

1. Write test suites 
2. Make debugging less verbose
3. Last debugging before showcase
4. Test/demo entire system
5. Conduct last evaluation and analyze results
6. Create user & developer manual(s)
7. Create demo video


